

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Approved by the Government of Tamil Nadu Permanently Affiliated to Thiruvalluvar University, Vellore Recognized under Section 2(f) and 12(B) of the UGC Act 1956 Accredited by NAAC (2nd Cycle) with (CGPA of 3.24/4) 'A' Grade

P.G. AND RESEARCH DEPARTMENT OF BIOCHEMISTRY

M.Sc., BIOCHEMISTRY

SYLLABUS

(CHOICE BASED CREDIT SYSTEM)

Under

LEARNING OUTCOMES-BASED CURRICULUM

FRAMEWORK (LOCF)

(Effective for the Batch of Students Admitted from 2024-2025)

PREFACE

The curriculum of postgraduate Biochemistry has been designed to explain the concepts in various fields of Biochemistry such as Molecular Biology, Biotechnology, Immunology etc.. And also explain both general and clinical Biochemistry. The purpose of the outcome-based education is meant to provide an exposure to the fundamental aspects in different area of Biochemistry and its applications, keeping in mind the growing needs for higher education, employability, entrepreneurship and social responsibility. The periodical restructuring of the syllabi is carried out to fulfill the requirements of graduate attributes, qualification descriptors, programme learning outcomes and course outcomes. The outcome-based education enriches the curriculum to deliver the basic principles, synthetic strategies, mechanisms and applicationoriented learning for the benefit of students. It also includes self-learning module, minor projects and industrial internship to enable students to get equipped for higher studies and employment. The programme also includes training to students for seminar presentation, preparation of internship reports, hands-on training in lab courses, skills to handle instruments, synthesis and its analysis, developing leadership qualities, organization and participation in the interdepartmental academic competitions. The elective courses offer chances to learn and augment interest in other related fields. The outcome-based curriculum is intended to enrich the learning pedagogy to global standards. ICT enabled teaching-learning platforms are provided to students along with the interaction of international scientists. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per Biochemistry.

ABOUT THE COLLEGE

The College was founded in the new millennium 2000 by the vision of late Shri.K.M.Govindarajan fondly known as Ayah, with a mission to offer higher education in the fields of Arts and Science to the needy and the poor middle class students of this area and make them fully employable and economically self reliant. With a humble beginning of launching an elementary school named Thiruvalluvar Elementary School in the year 1952, Ayah groomed it into a Higher Secondary School and later into a college. Education was his soul & breathe. The college has grown into a full-fledged educational hub offering 12 under graduate programmes, 8 post graduate programmes, 5 M.Phil research programmes and 4 Ph.D programmes. The college has been accredited with 'A' grade by NAAC in 2nd cycle and recognized under section 2(f) & 12(B) of the UGC act 1956. The College is permanently affiliated to Thiruvalluvar University. The College is also acquired the status of Autonomous from the academic year 2024-2025. The College is an associate member of ICT Academy and registered member of NPTEL and Spoken Tutorials of IIT Bombay. The college is also a member of INFLIBNET and NDL.

VISION OF THE COLLEGE

Empower young men and women by educating them in the pursuit of excellence, character building and responsible citizen.

MISSION OF THE COLLEGE

Offer higher education in the fields of Arts, Science & Management to the needy and make them fully self-dependent.

QUALITY POLICY OF THE COLLEGE

KMG Students achieve the best learning results and personal growth with modern education that equip them for working life and a changing society to become deserving citizens.

ABOUT THE DEPARTMENT

The knowledge of basic science is essential for the sustainable development of the society. To get the basic knowledge in Biochemistry to young students the Department of Bio chemistry initiated in the academic year 2000-2003. The objective of our department is to motivate students to excel in Biochemistry at the global level, which is necessary for Biochemists getting placement as well as becoming an entrepreneur in future. The department was uplifted as the post graduate department in the year 2004-2006. The department has been recognized as a research department since 2008 to offer M.Phil., Followed that the Thiruvalluvar University accorded recognition to the Department as a centre for Doctoral research in Biochemistry from 2019-2020. The focus of the department is the holistic development of the students and involves them in curricular and co-curricular activities. The Bio Chemistry Department pledges itself to serve in the broadest, innovative and most liberal manner towards the advancement of Biochemistry in all of its branches through academics, research and service missions upholding the values and entrepreneurial skills. The job potential to the biochemist is very high now and opportunities to provoke research in biochemistry are ample. Needless to say that for a developing country likes ours, "BIOCHEMISTRY IS OUR LIFE AND FUTURE".

VISION OF THE DEPARTMENT

Produce World class academicians, Scientist, Industrialist and entrepreneurs in the field of Biochemistry.

MISSION OF THE DEPARTMENT

- To educate and inspire the young minds from the basics to the latest innovations in science.
- Inculcate strong theoretical, practical, research and analytical skills in the subject domains and thereby prepare the students for both employability and entrepreneurship.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. Professional Excellence: Graduates will demonstrate competency and excellence in their chosen fields of study, applying theoretical knowledge to practical situations effectively.

2. Character Development: Graduates will exhibit strong moral and ethical character, upholding values of integrity, honesty, and respect for others in both personal and professional endeavors.

3. Leadership and Citizenship: Graduates will emerge as responsible leaders and active citizens, contributing positively to their communities and society at large through their actions and initiatives.

4. Continuous Learning: Graduates will engage in lifelong learning and professional development activities, adapting to evolving technologies, methodologies, and societal needs.

5. Self-Dependency and Entrepreneurship: Graduates will possess the skills and mindset necessary to be self-reliant and entrepreneurial, capable of creating opportunities for themselves and others through innovation and initiative.

6. Effective Communication and Collaboration: Graduates will demonstrate proficiency in communication skills, both verbal and written, and exhibit the ability to collaborate effectively with diverse teams and stakeholders.

7. Global Perspective: Graduates will have a broad understanding of global issues and perspectives, demonstrating cultural sensitivity and adaptability in multicultural environments.

PROGRAM OUTCOMES (POs)

On successful completion of the programme, the students will be able to:

POs	Graduate Attributes	Statements
PO1	Problem Solving Skill	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context
PO2	Decision Making Skill	Foster analytical and critical thinking abilities for data- based decision-making
PO3	Ethical Value	Ability to incorporate quality, ethical and legal value-basedperspectives to all organizational activities.
PO4	Communication Skill	Ability to develop communication, managerial and interpersonal skills
PO5	Individual and Team Leadership Skill	Capability to lead themselves and the team to achieve organizationalgoals.
PO6	Employability Skill	Inculcate contemporary business practices to enhance employabilityskills in the competitive environment.
PO7	Entrepreneurial Skill	Equip with skills and competencies to become an entrepreneur
PO8	Contribution to Society	Succeed in career endeavors and contribute significantly to society
PO 9	Multicultural competence	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
PO10	Moral and ethical awareness/reasoning	Ability to embrace moral/ethical values in conducting one's life.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the M.Sc., Biochemistry, the students will be able to:

PSOs	Statements
PSO1	Understand the principles and methods of various techniques in Biochemistry, Immunology, Microbiology, Enzyme kinetics and Molecular Cell Biology. Based on their understanding, the students may would be able to design and execute experiments during their final semester project, and further research programs.
PSO2	Insight on the structure-function relationship of biomolecules, their synthesis and breakdown, the regulation of these pathways, and their importance in terms of clinical correlation. Students will also acquire knowledge of the principles of nutritional biochemistry and also understand diseases and their prevention.
PSO3	To understand the concepts of cellular signal transduction pathways and the association of aberrant signal processes with various diseases. Acquire insight into the immune system and its responses, and use this knowledge in the processes of immunization, vaccine development, transplantation and organ rejection.

Correlation Rubrics:

High	Moderate	Low	No Correlation
3	2	1	-

Mapping of PSOs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
PSO1	3	3	3	3	1	3	3	3	3	3
PSO2	3	2	3	2	2	3	3	3	3	3
PSO3	3	3	3	3	2	3	3	3	3	3

K.M.G. COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS)

Subject and Credit System- M.Sc., Biochemistry

(Effective for the Batch of Students Admitted from 2024-2025)

			Course		Ins.H		Maxii	num Marl	ks
Semester	Part	Category Course Title				Credit	Internal	Externa l	Tot al
		Core I	APCBC11	Basics of Biochemistry	7	5	25	75	100
R - I	Ι	Core II	APCBC12	Biochemical and Molecular Biology Techniques	7	5	25	75	100
SEMESTER	Part -	Core III	APCPBC13	Laboratory course on Biomolecules and Biochemical Techniques	6	4	25	75	100
IW		Elective – I	APEBC14	Microbiology & Immunology	5	3	25	75	100
SE		Elective – II	APEBC15	Energy and Drug metabolism	5	3	25	75	100
				Semester Total	30	20			
		Core-IV	APCBC21	Enzymology	6	5	25	75	100
		Core-V	APCBC22	Cellular Metabolism	6	5	25	75	100
п.	- II	Core – VI	APCPBC23	Laboratory course in Enzymology, Microbiology and Cell Biology	6	4	25	75	100
SEMESTER -	Part	Discipline Centric Elective – III	APEBC24	Elective – III Biostatistics and Data Science	3	3	25	75	100
SEME		Generic Elective - IV:	APEBC25	Elective - IV : Biosafety, Lab Safety and IPR	3	3	25	75	100
		(SEC-I)	APSBC26	(SEC-I) Nutritional Biochemistry	4	2	25	75	100
	Part	Compulsory	APHR20	Human Rights	2	2	25	75	100
	II	Compulsory	APMOOC20	MOOC20 MOOC Course		2	-	100	100
				Semester Total	30	26			

		Core-VII	APCBC31	Physiology and Cell Biology	6	5	25	75	100
SEMESTER - III		Core-VIII	APCBC32	Clinical Biochemistry	6	5	25	75	10
		Core – IX	APCPBC34	Laboratory course on Clinical Biochemistry (Lab)	6	5	25	75	10
	Part -	Core – X	APCBC33	Molecular Biology	6	4	25	75	10
	P	Discipline Centric Elective - V	APEBC35	Biochemical Toxicology	3	3	25	75	10
SEI		SEC-II	APSBC36	(SEC-II) Molecular Basis of Diseases and Therapeutic strategies	3	2	25	75	10
		Compulsory	APIBC37	Internship/ Industrial Activity	-	2	100	-	10
				Semester Total	30	26			
		Core-XI	APCBC41	Gene editing, Cell and Gene therapy	6	5	25	75	10
		Core-XII	APCBC42	Pharmaceutical Biochemistry	6	5	25	75	10
		Project with vivavoce	APPBC43	Project and viva-voce	10	7	25	75	10
SEMESTER - IV	Part - I	Elective-VI (Industry Entrepreneurshi) 20% Theory 80% Practical	APEBC44	Industrial Microbiology	4	3	25	75	10
		4.5 Skill Enhancementcourse / Professional Competency SkillAPSBC45Developmental Biology and Endocrinology		1 05	4	2	25	75	100
	Part II	Compulsory	APEA40	Extension Activity		1	100	-	10
				Semester Total	30	23			
				Total		95			

Parts	Semester-I	Semester-II	Semester-III	Semester-IV	Total Credits
Part-I	20	22	26	22	90
Part-I		04		1	5
Total	20	26	26	23	95

Consolidated Semester wise and Component wise Credit distribution

*Part I and Part II components will be separately taken into account for CGPA calculation and classification for the post graduate programme and has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

Title of the Course	BASICS OF BIOCHEMISTRY	Hours/Week	07
Course Code	APCBC11	Credits	05
Category	Core I	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

- Students will be introduced to the structure of biomolecules.
- > The significance of carbohydrates in biological processes will be understood.
- > The structure, properties and biological significance of lipids in thebiological system will be studied
- Students will learn about the concepts of protein structure and their significance in biological processes and creatively comprehend therole of membrane components with their biological significance.
- Students will gain knowledge about the structures and functionalroles of nucleic acids in the biological system.

UNITS	Contents	COs	Cognitive Levels
I-LINN	Carbohydrates- Classification, structure (configurations and conformations, anomeric forms), function and properties of monosaccharides, mutarotation. Disaccharides and oligosaccharides with suitable examples. Polysaccharides - Homopolysaccharides (starch, glycogen, cellulose, inulin, dextrin, agar, pectin, dextran). Heteropolysaccharides - Glycosaminoglycans- source, structure, functions of hyaluronic acid, chondroitin sulphates, heparin, keratan sulphate. Glycoproteins - proteoglycans. O- Linked and N-linked glycoproteins. Biological significance of glycan. Blood group polysaccharides. Bacterial cell wall (peptidoglycans, teichoic acid).	CO1 CO3	K1 K2 K3
II-LINU	Lipids – Classification of lipids, structure, properties and functions of fatty acids, triacylglycerols, phospholipids, glycolipids, sphingolipids and steroids – Biological importance. Eicosanoids- classification, structure and functions of prostaglandins, thromboxanes, leukotrienes. Lipoproteins – Classification, structure, transport (endogenous and exogenous Pathway) and their biological significance.	CO1 CO2 CO3	K1 K2 K3 K4

III-LINU	Overview of Aminoacids - classification, structure and properties of amino acids, Biological role. Non Protein aminoacids and their biological significance. Proteins – classification based on composition, structure and functions. Primary, secondary, super secondary (motifs) (Helix-turn – helix, helix-loop-helix, Beta-alpha-beta motif, Rosemann Rossmann fold, Greek key), tertiary and quaternary structure of proteins. Structural characteristics of collagen and hemoglobin. Determination of amino acid sequence. Chemical synthesis of a peptide, Forces involved in stabilization of protein structure. Ramachandran plot. Folding of proteins. Molecular chaperons – Hsp 70 and Hsp 90 - biological role.	CO3 CO4	K1 K2 K3 K5
UNIT-IV	Membrane Proteins - Types and their significance. Cytoskeleton proteins - actin, tubulin, intermediate filaments. Biological role of cytoskeletal proteins. Membrane structure-fluid mosaic model	CO2 CO3 CO4	K1 K2 K3
V-TINU	Nucleic acids – types and forms (A, B, C and Z) of DNA. Watson- Crick model-Primary, secondary and tertiary structures of DNA. Triple helix and quadruplex DNA. Mitochondrial and chloroplast DNA. DNA supercoiling (calculation of Writhe, linking and twist number). Determination of nucleic acid sequences by Maxam Gilbert and Sanger's methods. Forces stabilizing nucleic acid structure. Properties of DNA and RNA. Cot curve. Major and minor classes of RNA, their structure and biological functions.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6
1. C (6 2. V 3. N Reference	 bended Text Books David L.Nelson and Michael M.Cox (2012) Lehninger, Principlesof B beth ed) W.H. Freeman. Voet. D & Voet. J.G (2010) Biochemistry, (4th ed), John Wiley & Sons Metzler D.E (2003). The chemical reactions of living cells (2nd ed), Acce Books 	, Inc. ademic	Press.
C 2. L 1	Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4 th ed Company: Newyork,1972. ee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heine 991.	mann: I	London,
2 4. A N 5. H	Gurudeep Raj, Advanced Inorganic Chemistry, 26thed; Goel Publishi 001. Atkins, P.W. & Paula, J. Physical Chemistry, 10th ed.; Oxford U lew York, 2014. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reacti Addison, Wesley Publishing Company: India, 1993.	niversit	y Press:

Website and e-learning source

- 1. https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Bioc hemistry_Online_(Jakubowski)
- 2. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/protein-glycosylation.html
- 3. https://ocw.mit.edu/courses/biology/7-88j-protein-folding-and- human-disease-spring-2015/study-materials/
- 4. https://www.open.edu/openlearn/science-maths- technology/science/biology/nucleic-acids-and-chromatin/content- section- 3.4.2
- 5. https://www.genome.gov/genetics-glossary/Cell-Membrane
- 6. https://nptel.ac.in/content/storage2/courses/102103012/pdf/mod3.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Explain the chemical structure and functions of carbohydrates	K1,K2
CO2	Using the knowledge of lipid structure and function, explain how it plays a role in.	K1,K2,K4
CO3	Describe the various levels of structural organization of proteins and the role of proteins in biological system	K1,K2,K3
CO4	Apply the knowledge of proteins in cell interactions.	K3,K4
CO5	Applying the knowledge of nucleic acid sequencing in research and diagnosis	K1,K2,K6

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	-	-	-	-	-	3	3	3
CO2	3	1	2	2	2	1	1	1	-	1	3	3	3
CO3	2	2	3	3	2	-	-	2	-	1	3	3	3
CO4	3	1	3	1	2	1	-	-	-	-	3	2	2
CO5	3	3	2	3	2	2	-	-	1	1	3	3	3

Title of the Course	BIOCHEMICAL AND MOLECULAR BIOLOGY TECHNIQUES	Hours/Week	07
Course Code	APCBC12	Credits	05
Category	Core II	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

- > To understand the various techniques used in biochemical investigationand microscopy.
- > To explain chromatographic techniques.\ and their applications
- > To explain electrophoretic techniques.
- > To comprehend the spectroscopic techniques and demonstrate theirapplications in biochemical investigations.
- > To acquire knowledge of radio labelling techniques and centrifugation

UNITS	Contents	COs	Cognitive Levels
I-TINU	General approaches to biochemical investigation, cell culture techniques and microscopic techniques. Organ and tissue slice technique, cell distribution and homogenization techniques, cell sorting, and cell counting, tissue Culture techniques. Cryopreservation, Biosensors- principle and applications. Principle, working and applications of light microscope, dark field, phase contrast and fluorescent microscope. Electron microscope- Principle, instrumentation of TEM and SEM, Specimen preparation and applications-shadow casting, negative staining and freeze fracturing.	CO1 CO3	K1 K2 K3
II-LINU	Chromatographic Techniques: Basic principles of chromatography- adsorption and partition techniques. Adsorption Chromatography – Hydroxyapatite chromatography and hydrophobic interaction Chromatography. Affinity chromatography. Gas liquid chromatography- principle, instrumentation, column development, detectors and applications. Low pressure column chromatography – principle, instrumentation, column packing, detection, quantitation and column efficiency, High pressure liquid chromatography- principle, instrumentation, delivery pump, sample injection unit, column packing, development, detection and application. Reverse HPLC, Capillary Electro Chromatography (CEC) and perfusion chromatography.	CO1 CO2 CO3	K1 K2 K3 K4

III-LINU	Electrophoretic Techniques: General principles of electrophoresis, supporting medium, factors affecting electrophoresis, Isoelectric focusing-principle, ampholyte, development of pH gradient and application. PAGE-gel casting-horizontal, vertical, slab gels, sample application, detection-staining using CBB, silver, fluorescent stains. SDS PAGE-principle and application in molecular weight determination principle of disc gel electrophoresis, 2D PAGE.Electrophoresis of nucleic acids-agarose gel electrophoresis of DNA, Electrophoresis of RNA, curve. Microchip electrophoresis and 2D electrophoresis, Capillary electrophoresis.	CO3 CO4	K1 K2 K3 K5
UNIT-IV	Spectroscopic techniques: Basic laws of light absorption- principle, instrumentation and applications of UV-Visible, IR, ESR, NMR, Mass spectroscopy, Turbidimetry and Nephelometry. Luminometry (Luciferase system, chemiluminescence). X - ray diffraction. Atomic absorption spectroscopy - principle and applications - Determination of trace elements.	CO2 CO3 CO4	K1 K2 K3 K5
UNIT-V	Radiolabeling Techniques and Centrifugation: Nature of radioactivity-detection and measurement of radioactivity, methods based upon ionization (GM counter) and excitation (scintillation counter), autoradiography and applications of radioactive isotopes, Biological hazards of radiation and safety measures in handling radioactive isotopes. Basic principles of Centrifugation. Preparative ultracentrifugation - Differential centrifugation, Density gradient centrifugation. Analytical ultracentrifugation - Molecular weight determination.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6
 Ke Bio Da Bla Da Mo A. Ro ed) Ka Spit 	ended Text Books eith Wilson, John Walker (2010) Principles and Techniques of Biochemi ology (7th ed) Cambridge University Press. wid Sheehan (2009), Physical Biochemistry: Principles and Application ack well. wid M. Freifelder (1982) Physical Biochemistry: Applications to oblecular Biology, W.H.Freeman. odney F.Boyer (2012), Biochemistry Laboratory: Modern Theory a), Prentice Hall. loch Rajan (2011), Analytical techniques in Biochemistry and M ringer. gel I.H (1976) Biochemical Calculations (2nd ed),John Wiley an	s (2nd e Biocher nd techr Iolecula	ed), Wiley- mistry and niques,(2nd r Biology,

Reference Books

- 1. Kaloch Rajan (2011), Analytical techniques in Biochemistry and Molecular Biology, Springer.
- 2. Segel I.H (1976) Biochemical Calculations (2nd ed), John Wiley and Sons.
- 3. Robyt JF (2015) Biochemical techniques: Theory and Practice (1st ed),CBS Publishers & Distributors.

Website and e-learning source

- 1. https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Online_(Jakubowski).
- 2. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/protein-glycosylation.html

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level			
CO1	Attain good knowledge in modern used in biochemical investigation and microscopy and apply the experimental protocols to plan and carry out simple investigations in biological research.	K1, K5			
CO2	Demonstrate knowledge to implement the theoretical basis of chromatography in upcoming practical course work)	K3, K5			
CO3	Demonstrate knowledge to implement the theoretical basis of electrophoretic techniques in research work	K1,K2,K3,K5			
CO4	Tackle more advanced and specialized spectroscopic techniques that are pertinent to research	K1, K2 & K5			
CO5	Tackle more advanced and specialized radioisotope and centrifugation techniques that are pertinent to research work	K1, K2 & K5			

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	1	-	-	1	3	3	3
CO2	3	1	3	2	2	1	1	1	-	1	3	3	3
CO3	3	2	3	3	2	2	-	1	-	1	3	2	3
CO4	3	2	3	1	2	1	1	1	-	1	2	3	3
CO5	3	3	3	3	2	2	1	1	-	1	3	2	3

COURSE	DESCRIPTORS
--------	-------------

Title of the Course	LABORATORY COURSE ON BIOMOLECULES AND BIOCHEMICAL TECHNIQUES	Hours/Week	06
Course Code	APCPBC13	Credits	04
Category	Core II	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

Objectives of the course:

- To instill skill in students enabling them to apprehend the wider knowledge about principles and techniques to be employed for the biomolecules under investigation.
- To inculcate the knowledge of various isolation and purificationtechniques of macromolecules like DNA, RNA, Glycogen and Starch,
- To perform colorimetric estimations to quantify important metabolites like lactate and tryptophan and minerals like calcium andiron from various sources.
- > To achieve training in subcellular fractionation and to identify themby markers.
- ▶ 5 To achieve training in various chromatographic techniques.
- > To perform the isolation and identification of the organelles of a cellusing differential centrifugation.
- ➤ To perform photochemical screening and quantification enabling them to give an insight on phytochemicals this will be useful forfuture research.

UNITS	Contents	COs	Cognitive Levels
I-LINU	 Biochemical studies and estimation of macromolecules 1. Isolation and estimation of glycogen from liver. 2. Isolation and estimation of DNA from animal tissue. 3. Isolation and estimation of RNA from yeast. 4. Purification of Polysaccharides –Starch and assessment of its purity 	CO1 CO3	K1,K2 K3,K5
II-LINU	UV absorption1. Denaturation of DNA and absorption studies at 260nm.2. Denaturation of Protein and absorption studies at 280nm.	CO1 CO2 CO3	K1,K2 K3,K4 K5

III-	Colorimetric estimations 1.Estimation of Pyruvate.	CO3	K1,K2	
III-LINU	2.Estimation of tryptophan.	CO4	K3,K5	
VI-TINU	Estimation of minerals 1. Estimation of calcium. 2. Estimation of iron.	CO2 CO3 CO4	K1, K2, K3 K5	
UNIT-V	 Plant Biochemistry Qualitative analysis Phytochemical screening. Estimation of Flavonoids -Quantitative analysis Group Experiments Fractionation of sub-cellular organelles by Differential centrifugation- Mitochondria and nucleus. Identification of the separated sub-cellular fractions using markerenzymes (any one). Separation and identification of lipids by thin layer chromatography. Separation of plant pigments from leaves by column Chromatography. Identification of Sugars by Paper Chromatography. Identification of Amino acids by Paper Chromatography 	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6	
 Da Ed Jay Va <	ended Text Books avid Plummer (2001) An Introduction to Practical Biochemistry(3rd e lucation (India) Private Ltd. yaraman, J (2011), laboratory Manual in Biochemistry, New agepublic arley H (2006) Practical Clinical Biochemistry (6th ed) , CBSPublish Debiyi and F. A. Sofowora, (1978) "Phytochemical screening of med 1. 3, pp. 234–246. of. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to echniques Edition:1 halytical techniques in Biochemistry and Molecular Biology; Katoch, e Books Debiyi and F. A. Sofowora, (1978) "Phytochemical screening of med 1. 3, pp. 234–246, of. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to chniques Edition:1 halytical techniques in Biochemistry and Molecular Biology; Katoch, of. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to chniques Edition:1 halytical techniques in Biochemistry and Molecular Biology; Katoch, of Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to chniques Edition:1	shers. hers. dical plants Chromato Rajan. Spr dical plants Chromato	s," Iloyidia, ography inger (2011) s," Iloyidia, ography	

Website and e-learning source

- 1. https://www.researchgate.net/publication/313745155_Practical_Bio chemistry_A_Student_Companion
- 2. <u>https://doi.org/10.1186/s13020-018-0177</u>
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368116/
- 4. https://www.life.illinois.edu/biochem/455/Lab%20exercises/2Photometry/spectrophotometry.pdf
- 5. https://ijpsr.com/bft-article/determination-of-total-flavonoid-and- phenol-content-in-mimusopselengi-linn/?view=fulltext
- 6. https://skyfox.co/wp-content/uploads/2020/12/Practical-Manual-of-Biochemistry.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	The student will be able to understand the isolation, purification and estimation of different biomolecules.	K1, K2, K4
CO2	The students will get acquainted the UV absorption studies of DNA and Protein.	K1,K2, K 3, K4
CO3	The student will be fine-tune in handling the instruments like colorimeter and spectrophotometer.	K1,K2,K4
CO4	The student can learn to detect the presence of phytochemicals and quantify.	K1,K2,K3,K4 & K6
CO5	The students will develop skill in analytical and Chromatography techniques.	K1, K2,K3,K4 & K6

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	1	1	-	-	-	3	3	3
CO2	3	3	3	2	3	1	1	1	-	1	3	1	3
CO3	3	3	3	3	2	1	2	1	-	1	2	3	3
CO4	3	3	3	2	3	2	2	1	-	-	3	2	3
CO5	3	3	2	2	2	2	2	1	1	1	3	3	2

Title of the Course	MICROBIOLOGY & IMMUNOLOGY	Hours/Week	05
Course Code	APEBC14	Credits	03
Category	Elective I	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

- To appreciate the classification of microorganisms based on their structure, size and shape with an insight into the ancient scripturesabout microbes.
- > To understand the role of microorganisms in environment and also tolearn the culture conditions.
- To recognize the possible contamination of foods by microorganisms, to learn about counteracting preservative measures. And to know about probiotics nature of microorganisms.
- > To gain knowledge on pathogenic mediation by microorganisms and preventive measures as well.
- > To comprehend the features of antimicrobial agents, their mechanism of action along with the side effects and also to explorenatural remedial measures against microbes.
- > To be able to exploit the various features of microorganisms for thebeneficial industrial production.

UNITS	Contents	COs	Cognitive Levels
I-TINU	Taxonomical classification - bacteria, viruses (DNA, RNA), algae, fungi and protozoa. Distribution and role of microorganisms in soil, water and air. Charaka's classification of microbes, lytic cycle and lysogeny. Types of culture media, isolation of pure culture, growth curve and the measurement of microbial growth.	CO1 CO3	K1 K2 K3
II-TINU	Contamination and spoilage of foods – cereals, cereal products, fruits, vegetables, meat, fish, poultry, eggs, milk and milk products. General principles of traditional and modern methods of food preservation - Removal or inactivation of microorganisms, boiling, steaming, curing, pasteurization, cold processing, freeze drying, irradiation, vacuum packing, control of oxygen and enzymes. Microbes involved in preparation of fermented foods - cheese, yoghurt, curd, pickles, rice pan cake, appam, ragi porridge and bread.	CO1 CO2 CO3	K1 K2 K3 K4

III-TINU	Food poisoning- bacterial food poisoning, <i>Salmonella</i> , <i>Clostridium blotulinum</i> (botulism), <i>Staphylococcus aureus</i> , fungal food poisoning –aflatoxin, food infection – <i>Clostridium, Staphylococcus</i> and <i>Salmonella</i> . Pathogenic microorganisms, <i>E. coli, Pseudomonas, Klebsilla, Streptococcus, Haemophilus, & Mycobacterium</i> , causes, control, prevention, cure and safety. Food microbiological screening- Real time PCR, ELISA, Aerobic and anaerobic Plate Count, dye reduction method, anaerobic lactic acid bacteria, anaerobic spore formers, Hazard analysis critical control point (HACCP).	CO3 CO4	K1 K2 K3 K5
VI-TINU	Antimicrobial chemotherapy, General characteristics of antimicrobial agents. Mechanism of action – sulfonamides, sulphones and PAS. Penicillin, streptomycin- spectra of activity, mode of administration, mode of action, adverse effects and sensitivity test., Antiviral and antiretroviral agents, Antiviral RNA interference, natural intervention (Natural immunomodulators routinely used in Indian medical philosophy).	CO2 CO3 CO4	K1 K2 K3 K5
V-TINU	Immune system- definition and properties. Cells of the immune system – neutrophils, eosinophils, basophils, mast cells, monocytes, macrophages, dendritic cells, natural killer cells, and lymphocytes (B cells and T cells). Lymphoid organs- Primary and Secondary; structure and functions. Antigens and Complement System: definition, properties- antigenicity and immunogenicity, antigenic determinants and haptens. Antigen - antibody interactions - molecular mechanism of binding. Affinity, avidity, valency, cross reactivity and multivalent binding. Immunoglobulins & Immune Response: Structure, classes and distribution of antibodies, Transplantation immunology- graft rejection and HLA antigens. Immunological techniques, Flow cytometry and its application.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6
 M. Li: France France	ended Text Books ichael J.Pelczar Jr. (2001) Microbiology (5th ed), McGraw HillEducation mited. azier WC, Westhoff DC, Vanitha NM (2010) Food Microbiology (5 th ed lucation (India) Private Limited. illey J and Sherwood L (2011), Prescott's Microbiology (8 th ed)McGra ndia). nanthanarayanan, Paniker and Arti Kapil (2013) Textbook of Microbiolog ack Swan. dy Owen, Jenni Punt Kuby (2013) ,Immunology (Kindt, Kuby Immun . H. Freeman & Co. rooks GF and Carroll KC (2013) Jawetz Melnick & AdelbergsMedical I 6 th ed) McGraw Hill Education Greenwood D (2012) ,Medical Microbiolog ealth), McGr aw Hill gy (9 th e nology) Microbio	raw Hill Education d) Orient (7th ed) ology,

Reference Text Books.

- 1. Michael J.Pelczar Jr. (2001) Microbiology (5th ed), McGraw HillEducation (India) Private Limited.
- 2. Frazier WC, Westhoff DC, Vanitha NM (2010) Food Microbiology (5th ed), McGraw Hill Education (India) Private Limited.
- 3. Willey J and Sherwood L (2011), Prescott's Microbiology (8th ed)McGraw Hill Education (India).
- 4. Ananthanarayanan, Paniker and Arti Kapil (2013) Textbook of Microbiology (9th ed) Orient BlackSwan.
- 5. Judy Owen, Jenni Punt Kuby (2013) ,Immunology (Kindt, Kuby Immunology) (7th ed) W. H. Freeman & Co.
- Brooks GF and Carroll KC (2013) Jawetz Melnick & Adel bergs Medical Microbiology, (26th ed) McGraw Hill Education.
- 7. Greenwood D (2012), Medical Microbiology, Elsevier Health.
- 8. Richards Coico (2018) 8th edition, immunology-a short course, Wiley Black Well.
- 9. Abul.K.Abbass-10th edition 2019 –Cellular and molecular immunology.

Website and e-learning source

- 1. https://www.ijam.co.in/index.php/ijam/article/view/1326 (Krumi(Microorganisms) in Ayurveda- a critical review).
- 2. Virtual Lectures in Microbiology and Immunology, University of Rochester https://www.frontiersin.org/articles/10.3389/fphar.2020.578970/full#h9.
- 3. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02151/full.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559905/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level		
CO1	To classify different types of microorganisms and explain life cycle of the microbes	K1, K2 & K5		
CO2	To recognize the microorganisms involved in decay of foods.	K1, K2 & K4		
CO3	To understand the common pathogenic bacterial and fungi	K1 & K2,K4		
CO4	To analyze various features of wide variety of antimicrobial agents along with their mode of action	K2, K5 & K6		
CO5	To apply knowledge gained in production of important immune components and transplantation immunology.	K2, K4 & K5		

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	1	-	-	-	-	3	3	3
CO2	3	2	3	2	2	2	1	1	-	1	3	3	3
CO3	2	2	3	3	2	1	-	1	-	1	3	3	3
CO4	3	3	3	3	2	3	1	1	-	1	3	3	3
CO5	3	3	3	3	2	2	2	-	1	1	3	3	3

Title of the Course	ENERGY AND DRUG METABOLISM	Hours/Week	05
Course Code	APEBC15	Credits	03
Category	Core Elective I	Year & Semester	I & I
Prerequisites	B.Sc., Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

- Familiarize on concepts of enthalpy, entropy, free energy, redox system, biological oxidation and high energy compounds.
- > Provide an insight into the relationship between electron flow and phosphorylation.
- Inculcate knowledge on processes involved in converting light energy to chemical energy and associated food production by autotrophs.
- Provide a platform to understand the versatile role of Krebs cycle, transport of NADH across mitochondrial membrane and energetic.
- Educate on the various phases xenobiotic metabolism.

UNITS	Contents	COs	Cognitive Levels
I-TINU	Thermodynamic- principles in biology- Concept of entropy, enthalpy and free energy change. Redox systems. Redox potential and calculation of free energy. Biological oxidation – Oxidases, dehydrogenases, hydroperoxidases, oxygenases. Energy rich compounds – phosphorylated and non-phosphorylated. High energy Linkages.	CO1 CO3	K1 K2 K3
UNIT-II	Electron transport chain-various complexes of ETC, Q-cycle. Inhibitors of ETC. Oxidative phosphorylation - P/O ratio, Chemiosmotic theory. Mechanism of ATP synthesis - role of F0-F1 ATPase, ATP-ADP cycle. Inhibitors of oxidative phosphorylation ionophores, protonophores. Regulation of oxidative Phosphorylation.	CO1 CO2 CO3	K1 K2 K3 K4
III-LINU	Light reaction - Hills reaction, absorption of light, photochemical event. Photo ETC-cyclic and non-cyclic electron flow. Photo phosphorylation - role of CF0-CF1 ATPase. Dark reaction- Calvin cycle, control of C3 pathway, and Hatch-Slack pathway (C4 pathway), Photorespiration. Synthesis and degradation of starch.	CO3 CO4	K1 K2 K3 K5

UNIT-IV	Interconversion of major food stuffs. Energy sources of brain, muscle, liver, kidney and adipose tissue. Amphibolic nature of Citric acid cycle. Anaplerotic reaction. Krebs cycle, Inhibitors and regulation of TCA cycle. Transport of extra mitochondrial NADH – Glycerophosphate shuttle, malate - aspartate shuttle. Energetics of metabolic pathways – glycolysis, (aerobic and anaerobic), citric acid cycle, Beta-oxidation.	CO2 CO3 CO4	K1 K2 K3 K5
UNIT-V	Activation of sulphate ions – PAPS, APS, SAM and their biological role. Metabolism of xenobiotics – Phase I reactions – hydroxylation, oxidation and reduction. Phase II reactions – glucuronidation, sulphation, glutathione conjugation, acetylation and methylation. Mode of action and factors affecting the activities of xenobiotic enzymes.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6
Recomm	ended Text Books		
1. Da	avid L.Nelson and Michael M.Cox (2012) Lehninger Principles of Bioche	emistry ((6th ed),
W	.H.Freeman.		
2. Ro	obert K. Murray, Darryl K. Granner, Peter A. Mayes, and Victor W. Rody	well (20	12),
Ha	arper's Illustrated Biochemistry, (29th ed), McGraw-Hill Medical.		
3. M	etzler D.E (2003). The chemical reactions of living cells (2nd ed), Acader	mic Pre	ss.
Referer	nce Text Books.		
1. Zu	ubay G.L (1999) Biochemistry, (4th ed), Mc Grew-Hill.		
2. De	evlin RM (1983) Plant Physiology (4th ed), PWS publishers		
3. Ta	niz L, Zeiger E (2010), Plant Physiology (5th ed), Sinauer Associates, Ind	с	
Website a	and e-learning source		
-	/chemed.chem.purdue.edu/genchem/topicreview/bp/ch21/gibb s.php		
_	/www.ncbi.nlm.nih.gov/pmc/articles/PMC7767752/#:~:text=T mitochondrial%20electron%20transport%20chain,cellular%2		
	%20through%20oxidative%20phosphorylation.		
	//www.researchgate.net/figure/Oxidative-phosphorylation-in-mitochondri	al-elect	ron-
-	ort-chain-ETC-and- proton_fig1_230798915		
_	/www.lyndhurstschools.net/userfiles/84/Classes/851/photosynt		
	20light%20&%20dark%20reactions%20ppt.pdf?id=560837	2	
_	bajan.files.wordpress.com/2010/05/amphibolic-nature-of- krebs-cycle.pdf	ť	
	www.sciencedirect.com/topics/medicine-and-dentistry/xenobiotic- olism#:~:text=Xenobiotic%20metabolism		
motah			

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level			
CO1	Appreciate the relationship between free energy and redox potential.	K1,K2,K3,K4			
CO2	Gain knowledge on role of mitochondria in the production of energy currency of the cell.	K1, K2, K5,			
CO3	Acquaint with the process of photosynthesis.	K1,K2,K4,K5			
CO4	Comprehend on the diverse role of TCA cycle and the energy obtained on complete oxidation of glucose and fatty acid.	K2, K5			
CO5	Correlate the avenues available to metabolize the xenobiotics.	K1, K2,K4,K5			

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	3	3	-	-	-	-	-	3	3	3
CO2	3	2	3	3	2	-	1	1	-	1	3	3	3
CO3	3	2	3	3	3	-	-	2	-	1	2	2	3
CO4	3	1	3	1	2	1	1	-	-	-	3	2	3
CO5	3	2	2	2	2	2	2	-	1	1	3	2	3